Important Definitions

The terms \textit{recursive} and \textit{recursively enumerable} apply both to sets of numbers and to sets of strings (i.e., languages).

A set \(S \) is \textbf{recursive} if:

\begin{itemize}
 \item There is a Turing Machine which recognizes \(S \); \textit{or, equivalently},
 \item \(S \) has a total recursive characteristic function
\end{itemize}

A set \(S \) is \textbf{recursively enumerable} if:

\begin{itemize}
 \item There is a Turing Machine which accepts \(S \); \textit{or, equivalently},
 \item There is a Turing Machine which generates \(S \)
\end{itemize}

All of these definitions apply both to sets of numbers and sets of strings. Additionally, if \(S \) is a set of numbers:

Set \(S \) is \textbf{recursively enumerable} if

\begin{itemize}
 \item \(S \) is the domain of some partial recursive function \(f \).
\end{itemize}

We can also extend some the decidable/undecidable terminology from Rice’s Theorem to problems in general:

A yes/no problem is \textbf{decidable} if there is a Turing Machine which always halts and correctly answers 1 ("yes") or 0 ("no") to the problem.

A yes/no problem is \textbf{undecidable} if there is no Turing Machine which always halts and correctly answers 1 ("yes") or 0 ("no") to the problem.

Because of the Church-Turing thesis, you can substitute "algorithm" for "Turing Machine" in each of the above definitions.

Review Questions: Decidability

Note: Some of these questions are very easy, and are listed just to see that you understand the definitions involved.

1. Classify each of the following problems as \textbf{decidable} or \textbf{undecidable}. Justify your answer in each case. (To show the existence of a Turing machine for this question, it is sufficient to describe an algorithm in English; you do not have to give the full state diagram.) \(L(M) \) means "the language accepted by Turing Machine \(M \).

 a) Given a Turing machine \(M \), is \(L(M) \) recursively enumerable?
 b) Given a Turing machine \(M \), does \(L(M) \) have a recursively enumerable complement?
 c) Given a Turing machine \(M \) with input alphabet \(\Sigma = \{a, b\} \), does \(L(M) \) contain the empty string?
 d) Given a string \(x \) (over alphabet \(\Sigma = \{a, b\} \)), is \(x \) the empty string?

2. Classify each of the following languages as \textbf{recursive}, \textbf{recursively enumerable but not recursive}, or \textbf{not recursively enumerable}. Justify your answer in each case. (As before, to show the existence of a Turing machine for this question, it is sufficient to give an algorithm.)

Assume that the alphabet for languages (a)-(e) is \{1\}, with each \(x \) encoded in unary-plus-one notation; that the input alphabet for each Turing Machine mentioned in the definitions is \(\{a, b\} \); and that the Gödel encodings are designed for this alphabet.

 a) \(\{x \mid x \text{ is the Gödel number of some Turing Machine.}\} \)
 b) \(\{x \mid x \text{ is the Gödel number of a Turing Machine } M, \text{ and } L(M) \text{ is recursively enumerable } \} \)
 c) \(\{x \mid x \text{ is the Gödel number of a Turing Machine } M, \text{ and } L(M) \text{ contains the string } aaa \} \)
 d) \(\{x \mid x \text{ is the Gödel number of a Turing Machine } M, \text{ and } L(M) \text{ does not contain the string } aaa \} \)
 e) \(\{x \mid x \text{ is the Gödel number of a Turing Machine } M, \text{ and } L(M) \subseteq a^* \}. \)
Review Questions: Chomsky Hierarchy

Assume that the alphabet for each of the languages below is \(\{a, b, c\} \).

3. Design a nondeterministic finite automaton that accepts \((abc)^*a(b^*)c\).

4. Design a right-linear grammar that accepts \((abc)^*a(b^*)c\).

5. Design a nondeterministic finite automaton that accepts \(a*b*c^*\).

6. Design a right-linear grammar that accepts \(a*b*c^*\).

7. Design a nondeterministic finite automaton that accepts \((abc)^*a(b^*)c \cup a*b*c^*\). Be as lazy as possible: reuse as much of your solutions from #3 and #5 as you can.

8. Design a right-linear grammar that accepts \((abc)^*a(b^*)c \cup a*b*c^*\). Be as lazy as possible: reuse as much of your solutions from #4 and #6 as you can.

9. Construct a context-free grammar that accepts the same language as this context-sensitive grammar:

\[
\begin{align*}
S & \rightarrow AB \\
A & \rightarrow a \\
A & \rightarrow c \\
aB & \rightarrow aBb \\
aB & \rightarrow ab \\
B & \rightarrow b
\end{align*}
\]

10. Show that the set \(\text{Odd}\) of odd natural numbers is recursively enumerable by showing that \(\text{Odd} = \text{Image}(f)\) for some unary total recursive function \(f\).

11. 12.7.2 a, b, c, l

Hint for 12.7.2 a: Given a finite set of strings, can you construct a grammar that accepts it? What does the grammar look like? How about a regular expression or finite automaton: can you make one of these to accept the set?

Hint for 12.7.2 l: Consider one member of this family, the set of strings over \(\{a, b\}\) of length 4. How many strings are in this set?