Important Definitions
The terms \textit{recursive} and \textit{recursively enumerable} apply both to sets of numbers and to sets of strings (i.e., languages).
A set \(S\) is \text{recursive} if:
\begin{itemize}
 \item There is a Turing Machine which recognizes \(S\); \textit{or, equivalently},
 \item \(S\) has a total recursive characteristic function
\end{itemize}
A set \(S\) is \text{recursively enumerable} if:
\begin{itemize}
 \item There is a Turing Machine which accepts \(S\); \textit{or, equivalently},
 \item There is a Turing Machine which generates \(S\)
\end{itemize}
All of these definitions apply both to sets of numbers and sets of strings. Additionally, if \(S\) is a set of numbers:
Set \(S\) is \text{recursively enumerable} if
\begin{itemize}
 \item \(S\) is the domain of some partial recursive function \(f\).
\end{itemize}
We can also extend some the decidable/undecidable terminology from Rice’s Theorem to problems in general:
A yes/no problem is \text{decidable} if there is a Turing Machine which always halts and correctly answers 1 ("yes") or 0 ("no") to the problem.
A yes/no problem is \text{undecidable} if there is no Turing Machine which always halts and correctly answers 1 ("yes") or 0 ("no") to the problem.
Because of the Church-Turing thesis, you can substitute "algorithm" for "Turing Machine" in each of the above definitions.

Review Questions: Decidability
Note: Some of these questions are very easy, and are listed just to see that you understand the definitions involved.
1. Classify each of the following problems as \text{decidable} or \text{undecidable}. Justify your answer in each case. (To show the existence of a Turing machine for this question, it is sufficient to describe an algorithm in English; you do not have to give the full state diagram.) \(L(M)\) means "the language accepted by Turing Machine \(M\).
 \begin{enumerate}
 \item Given a Turing machine \(M\), is \(L(M)\) recursively enumerable?
 \item Given a Turing machine \(M\), does \(L(M)\) have a recursively enumerable complement?
 \item Given a Turing machine \(M\) with input alphabet \(\Sigma = \{a, b\}\), does \(L(M)\) contain the empty string?
 \item Given a string \(x\) (over alphabet \(\Sigma = \{a, b\}\)), is \(x\) the empty string?
\end{enumerate}
2. Classify each of the following languages as \text{recursive}, \text{recursively enumerable but not recursive}, or \text{not recursively enumerable}. Justify your answer in each case. (As before, to show the existence of a Turing machine for this question, it is sufficient to give an algorithm.)
Assume that the alphabet for languages (a)-(e) is \(\{1\}\), with each \(x\) encoded in unary-plus-one notation; that the input alphabet for each Turing Machine mentioned in the definitions is \(\{a, b\}\); and that the Gödel encodings are designed for this alphabet.
 \begin{enumerate}
 \item \(\{ x \mid x \text{ is the Gödel number of some Turing Machine.}\}\)
 \item \(\{ x \mid x \text{ is the Gödel number of a Turing Machine } M, \text{ and } L(M) \text{ is recursively enumerable }\}\)
 \item \(\{ x \mid x \text{ is the Gödel number of a Turing Machine } M, \text{ and } L(M) \text{ contains the string } aaa\}\)
 \item \(\{ x \mid x \text{ is the Gödel number of a Turing Machine } M, \text{ and } L(M) \text{ does not contain the string } aaa\}\)
 \item \(\{ x \mid x \text{ is the Gödel number of a Turing Machine } M, \text{ and } L(M) \subseteq \{a\}^*\}\)
Review Questions: Chomsky Hierarchy

Assume that the alphabet for each of the languages below is \{a, b, c\}.

3. Design a nondeterministic finite automaton that accepts \((abc)^*a(b^*)c\).

4. Design a right-linear grammar that accepts \((abc)^*a(b^*)c\).

5. Design a nondeterministic finite automaton that accepts \(a^*b^*c^*\).

6. Design a right-linear grammar that accepts \(a^*b^*c^*\).

7. Design a nondeterministic finite automaton that accepts \((abc)^*a(b^*)c \cup a^*b^*c^*\). Be lazy as possible: reuse as much of your solutions from #3 and #5 as you can.

8. Design a right-linear grammar that accepts \((abc)^*a(b^*)c \cup a^*b^*c^*\). Be as lazy as possible: reuse as much of your solutions from #4 and #6 as you can.

9. Construct a context-free grammar that accepts the same language as this context-sensitive grammar:

\[
\begin{align*}
S & \rightarrow A B \\
A & \rightarrow a \\
A & \rightarrow c \\
aB & \rightarrow aB B \\
aB & \rightarrow ab \\
B & \rightarrow b
\end{align*}
\]

10. Show that the set \(Odd\) of odd natural numbers is recursively enumerable by showing that \(Odd\) is \(Image(f)\) for some unary total recursive function \(f\).

11. 12.7.2 a, b, c, l

 Hint for 12.7.2 a: Given a finite set of strings, can you construct a grammar that accepts it? What does the grammar look like? How about a regular expression or finite automaton: can you make one of these to accept the set?

 Hint for 12.7.2 l: Consider one member of this family, the set of strings over \{a, b\} of length 4. How many strings are in this set?