Energy

- **Kinetic Energy**: energy in the form of motion
 - Individual Motion (e.g., batted baseball)
 - Thermal Energy: energy of particles in random motion

- **Potential Energy**: stored energy
 - Gravitational Potential (e.g., skier at top of slope)
 - Electrostatic Potential (e.g., charged particles)
 - Chemical Potential (e.g., batteries)
 - Rest-mass Energy (nuclear physics)
 - Other types

- **Radiative Energy**
 - Energy in the form of light (photons)
Thermal Energy

- Temperature measures thermal motion

Longer arrows mean higher speed.
Temperature Scales

- 373.15 K (100° C, 212° F) - Water boils
- 273.15 K (0° C, 32° F) - Water freezes
- 0 K (−273.15° C, −459.67° F) - Absolute zero

Kelvin | Celsius | Fahrenheit
Phases of Matter

- Temperature affects the phase of matter
- Temperature of phase shifts depend on the material
Density and Collisions
Structure of the Atom

- Neutral atom has the same number of protons as electrons
Electron Orbits

ground state excited state ionization

© Addison-Wesley Longman
Energy Levels of Atoms

<table>
<thead>
<tr>
<th>Level</th>
<th>Energy Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ionization</td>
<td>13.6 eV</td>
</tr>
<tr>
<td>level 4</td>
<td>12.8 eV</td>
</tr>
<tr>
<td>level 3</td>
<td>12.1 eV</td>
</tr>
<tr>
<td>level 2</td>
<td>10.2 eV</td>
</tr>
<tr>
<td>level 1</td>
<td>0 eV</td>
</tr>
</tbody>
</table>

(ground state)
Photons of Light

- The smallest unit of light is a photon
- A photon is often called a particle of light
- The Energy of an individual photon depends on its wavelength (frequency)
- The Energy of a photon is proportional to its frequency:
 \[E = h \cdot f = \frac{hc}{\lambda} \]
Electromagnetic Spectrum

<table>
<thead>
<tr>
<th>wavelength (meters)</th>
<th>radio</th>
<th>infrared</th>
<th>ultraviolet</th>
<th>X rays</th>
<th>gamma rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-12}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^{23}</td>
</tr>
<tr>
<td>10^{-8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^{8}</td>
</tr>
<tr>
<td>10^{-4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^{-4}</td>
</tr>
<tr>
<td>10^{0}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10^{4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^{4}</td>
</tr>
<tr>
<td>10^{6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^{10}</td>
</tr>
<tr>
<td>10^{10}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^{12}</td>
</tr>
<tr>
<td>10^{12}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^{6}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frequency (hertz)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>10^{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{7}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{11}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{15}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{19}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{23}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>energy (electron volts)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>10^{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-12}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^{4}</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^{4}</td>
</tr>
<tr>
<td>10^{23}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Addison-Wesley Longman
Energy Levels and Spectral Lines
Absorption vs. Emission
Unique Spectral Lines for Atoms

- helium
- sodium
- neon

© Addison-Wesley Longman
Molecular Bands

(a) Rotation

(b) Vibration
Thermal Radiation
Laws of Thermal Radiation

- **Stefan-Boltzmann Law:**
 \[\frac{L}{A} = \sigma T^4 \]

- **Wien’s Law:**
 \[\lambda_{\text{max}} T = \text{constant} \]
Spectra in the Lab
Spectrum from Mars

- Emission lines (UV): hot upper atmosphere
- Object reflects red sunlight: rust-colored surface
- CO₂ absorption bands: carbon dioxide atmosphere
- Thermal emission peak in infrared indicates surface temperature about 225 K
Doppler Shift

(a) true wavelength; normal pitch for sound
(b) longer wavelength; sound lower pitched
(c) shorter wavelength; sound higher pitched
Doppler Shift

- $z = \frac{\Delta \lambda}{\lambda} = \frac{v_r}{c}$
- Positive z is a redshift
- Radial velocity is positive moving away
Doppler Shifted Spectral Lines

Laboratory spectrum
Lines at rest wavelengths.

Star 1
Lines redshifted: Star is moving away from us.

Star 2
Greater redshift: Star is moving away faster than Star 1.

Star 3
Lines blueshifted: Star is moving toward us.

Star 4
Greater blueshift: Star is moving toward us faster than Star 3.
Doppler Broadening

A spectral line from star A indicates that star A rotates slowly. Narrow spectral lines indicate that star A rotates slowly. This light is slightly blueshifted.

A spectral line from star B indicates that star B rotates rapidly. Wide spectral lines indicate that star B rotates rapidly. This light is greatly blueshifted.

This light is greatly redshifted.

To Earth, the approaching side is indicated.

© Addison-Wesley Longman
Cloud in Interstellar Space